Article 7216

Title of the article

CONVERGENCE OF THE GALERKIN METHOD IN THE ELECTROMAGNETIC WAVES DIFFRACTION PROBLEM ON A SYSTEM OF ARBITRARY LOCATED BODIES AND SCREENS

Authors

Smirnov Yuriy Gennad'evich, Doctor of physical and mathematical sciences, professor, head of sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru
Moskaleva Marina Aleksandrovna, Junior researcher, Research Center “Supercomputer modeling in electrodynamics”, Penza State University (40 Krasnaya street, Penza, Russia), m.a.moskaleva1@gmail.com

Index UDK

517.3

DOI

10.21685/2072-3040-2016-2-7

Abstract

Background. Mathematical modeling of electromagnetic waves diffraction on screen and bodies of various forms is an important aspect in modern electrodynamics. The objective of this work is to prove the convergence of the Galerkin method for solving the electromagnetic waves diffraction problem on a system of arbitrary located bodies and screens.
Material and methods. The statement of the electromagnetic waves diffraction problem on the system of bodies and screens of irregular shapes is considered. The stated problem of diffraction is presented as a system of integral-differential equations; properties of the system are studied using pseudodifferential calculus in Sobolev spaces.
Results. The problem of diffraction is formulated; the boundary value problem is reduced to a system of integral-differential equations. To solve the system the authors suggest the numerical method of Galerkin with finite basis functions. The convergence of the Galerkin method is proved.
Conclusions. The results of convergence of the Galerkin method for a system consisting of a plane screen and inhomogeneous anisotropic body are obtaned; they are important for further theoretical and numerical studies of the problem.

Key words

diffraction problem, system of integral-differential equations, the Galerkin method, the basis functions, elliptic operator.

Download PDF
References

1. Kolton D., Kress R. Metody integral'nykh uravneniy v teorii rasseyaniya: per. s angl. [Methods of integral equations in the scattering theory: translation from English]. Moscow: Mir, 1987.
2. Smirnov Yu. G., Tsupak A. A. Advances in Mathematical Physics. 2015, vol. Article ID 945965, 6 p. DOI: 10.1155/2015/945965.
3. Maksimova M. A., Medvedik M. Yu., Smirnov Yu. G., Tsupak A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2014, no. 3 (31), pp. 114–133.
4. Smirnov Yu. G. Proektsionnye metody: metod. ukazaniya [Projection methods: teaching suggestions]. Penza, 1997.
5. Hänninen I., Taskinen M. and Sarvas J. Prog. Electromagn. Res. PIER. 2006, vol. 63, pp. 243–278.
6. Smirnov Yu. G., Tsupak A. A. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2004, vol. 44, no. 12, pp. 2264–2274.
7. Kolmogorov A. N., Fomin S. V. Elementy teorii funktsiy i funktsional'nogo analiza [Elements of the theory of functions and functional analysis]. Moscow: Nauka, 1976.
8. Medvedik M. Yu. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2012, no. 3 (23), pp. 84–98.
9. Medvedik M. Yu., Smirnov Yu. G. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2014, vol. 54, no. 1, pp. 105–113.
10. Il'inskiy A. S., Smirnov Yu. G. Difraktsiya elektromagnitnykh voln na provodyashchikh tonkikh ekranakh [Electromagnetic waves diffraction on conducting thin screens]. Moscow: Radiotekhnika, 1996.
11. Valovik D. V., Smirnov Yu. G. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2009, no. 4 (12), pp. 70–84.
12. Smirnov Yu. G., Tsupak A. A. Applicable Analysis. 2016, vol. 2016. DOI:10.1080/00036811.2016.1188289.

 

Дата создания: 20.10.2016 14:07
Дата обновления: 20.10.2016 15:35